

K23U 0517

Reg. N	No.	
Name	:	

VI Semester B.Sc. Degree (CBCSS – OBE – Regular/Supplementary/
Improvement) Examination, April 2023
(2019 and 2020 Admissions)
DISCIPLINE SPECIFIC ELECTIVE IN MATHEMATICS
6B14A MAT: Graph Theory

Time: 3 Hours

Max. Marks: 48

PART - A

Answer any 4 questions. Each question carries one mark.

- 1. Define Graph.
- 2. Define connectivity of a graph.
- 3. Draw a 3-regular graph.
- 4. Define Euler tour.
- 5. What is meant by adjacency matrix of a graph?

PART - B

Answer any 8 questions. Each question carries two marks.

- 6. Define union and intersection of sub graphs of a graph.
- 7. Are the following graphs isomorphic? Justify your answer.

K23U 0517

- 8. Find the number of vertices in a complete graph with 55 edges.
- 9. Draw all trees with 5 vertices.
- 10. Define platonic bodies.
- 11. Define walk. Give one example.
- 12. Explain Chinese Postman Problem.
- 13. State Euler's formula. Verify the formula in the following graph.

- 14. What is meant by closure of a graph?
- 15. Draw a complete bipartite non planar graph.
- 16. Find the number of distinct spanning trees in the complete graph K₅.

PART - C

Answer any four questions. Each question carries four marks.

- 17. State True or False. Graphs are natural mathematical models. Justify your answer.
- 18. Prove that a connected graph is a tree if and only if every edge of G is a bridge.
- 19. Prove that a simple graph G is Hamiltonian if and only if its closure C(G) is Hamiltonian.
- 20. Prove that a connected graph G with at most two odd vertices has an Euler trail.

NINI MARKA Let G be a graph with n vertices. Prove that if G is a connected graph with n - 1 K23U 0517

Define Jordan curve. Give one example.

b) State Jordan curve theorem.

23. Explain contraction with example.

PART - D

Answer any two questions. Each question carries six marks.

prove that a tree with n vertices has precisely n - 1 edges.

25. a) State and prove the first theorem of graph theory.

b) Prove that every graph has an even number of odd vertices.

c) Let G be a k-regular graph, where k is an odd number. Prove that the

26. Prove that a connected graph is Euler iff the degree of every vertex is even.

27. Prove that k₅, the complete graph on five vertices, is non planar.

